Spatiotemporal analysis of urban environment based on the vegetation–impervious surface–soil model

نویسندگان

  • Huadong Guo
  • Qingni Huang
  • Xinwu Li
  • Zhongchang Sun
  • Ying Zhang
چکیده

This study explores a spatiotemporal comparative analysis of urban agglomeration, comparing the Greater Toronto and Hamilton Area (GTHA) of Canada and the city of Tianjin in China. The vegetation–impervious surface–soil (V–I–S) model is used to quantify the ecological composition of urban/peri-urban environments with multitemporal Landsat images (3 stages, 18 scenes) and LULC data from 1985 to 2005. The support vector machine algorithm and several knowledgebased methods are applied to get the V–I–S component fractions at high accuracies. The statistical results show that the urban expansion in the GTHA occurred mainly between 1985 and 1999, and only two districts revealed increasing trends for impervious surfaces for the period from 1999 to 2005. In contrast, Tianjin has been experiencing rapid urban sprawl at all stages and this has been accelerating since 1999. The urban growth patterns in the GTHA evolved from a monocentric and dispersed pattern to a polycentric and aggregated pattern, while in Tianjin it changed from monocentric to polycentric. Central Tianjin has become more centralized, while most other municipal areas have developed dispersed patterns. The GTHA also has a higher level of greenery and a more balanced ecological environment than Tianjin. These differences in the two areas may play an important role in urban planning and decision-making in developing countries. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10 .1117/1.JRS.8.084597]

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A satellite remote sensing based assessment of urban heat island in Lanzhou city , northwest China

As a promising application, quantitative remote sensing of urban heat island (UHI) could facilitate our understanding of urban/suburban environment and its relationship with urbanization. This paper investigates the urban heat island effect of Lanzhou, China, a densely built up city in a valley, based on Landsat ETM+ image acquired on April 22, 2000, whose spatial resolution is sufficient for m...

متن کامل

Estimating impervious surface distribution by spectral mixture analysis

Estimating the distribution of impervious surface, a major component of the vegetation–impervious surface–soil (V–I–S) model, is important in monitoring urban areas and understanding human activities. Besides its applications in physical geography, such as run-off models and urban change studies, maps showing impervious surface distribution are essential for estimating socio-economic factors, s...

متن کامل

Investigation of Impervious surface and Urban Surface Temperature in Qaemshahr

Information on a variation of impervious surface is useful for understanding urbanization and its impacts on the hydrological cycle, water management, surface energy balances, urban heat island, and biodiversity. This research attempts to detect impervious surfaces and its changes by satellite imagery in Qaemshahr. The relationship between impervious surfaces and changes in land surface tempera...

متن کامل

Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery

With rapid urban growth in recent years, understanding urban biophysical composition and dynamics becomes an important research topic. Remote sensing technologies introduce a potentially scientific basis for examining urban composition and monitoring its changes over time. The vegetation–impervious surface–soil (V–I–S) model, in particular, provides a foundation for describing urban/suburban en...

متن کامل

A Modified Multi-Source Parallel Model for Estimating Urban Surface Evapotranspiration Based on ASTER Thermal Infrared Data

To date, little attention has been given to remote sensing-based algorithms for inferring urban surface evapotranspiration. A multi-source parallel model based on ASTER data was one of the first examples, but its accuracy can be improved. We therefore present a modified multi-source parallel model in this study, which has made improvements in parameterization and model accuracy. The new feature...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017